Utilization of intracellular ferritin iron for hemoglobin synthesis in developing human erythroid precursors.

نویسندگان

  • B Vaisman
  • E Fibach
  • A M Konijn
چکیده

Ferritin (Ft) plays an important role in cellular iron metabolism. It can store substantial amounts of iron in a nontoxic soluble form. However, its ability to donate iron for cellular needs, in particular for hemoglobin (Hb) synthesis in human erythroid cells, is still controversial. We studied the role of intracellular Ft-iron in Hb synthesis and the involvement of lysosomal proteolysis in iron release from Ft. Ft-iron release and its subsequent incorporation into heme was investigated in normal human erythroid precursors developing in culture. Dual staining flow cytometry with antibody (Ab)-specific for Ft and for Hb showed a decrease in cellular Ft content in erythroid cells during their maturation. Cellular Ft-iron participation in heme synthesis was studied by labeling cells with 59Fe. Cells were incubated with 59Fe-labeled human diferric transferrin (Tf), then chased, and intracellular radioiron distribution between Ft and Hb was determined on subsequent days by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and/or Ft immunoprecipitation and heme extraction. On day 6, most of the 59Fe accumulated in Ft. Thereafter, a progressive decrease of radioiron in Ft and a corresponding increase of the label in Hb was observed. Inhibition of heme synthesis with succinylacetone caused radioiron to remain in Ft and prevented its redistribution. Addition of unlabeled diferric Tf to the culture medium did not prevent radioiron from appearing in Hb. Chloroquine repression of lysosomal function prevented radio-iron redistribution between Ft and Hb. Inhibition of proteolysis by chymostatin and/or leupeptin led to Ft-protein accumulation in the cells and also prevented radioiron transfer from Ft to Hb. The results of the present study suggest that intracellular Ft donates iron for heme synthesis and that proteolytic Ft degradation in a lysosomal-like compartment is necessary for iron release and its transfer to heme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RED CELLS Regulation of Intracellular Iron Metabolism in Human Erythroid Precursors by Internalized Extracellular Ferritin

Human erythroid precursors grown in culture possess membrane receptors that bind and internalize acid isoferritin. These receptors are regulated by the iron status of the cell, implying that ferritin iron uptake may represent a normal physiologic pathway. The present studies describe the fate of internalized ferritin, the mechanisms involved in the release of its iron, and the recognition of th...

متن کامل

Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin.

Human erythroid precursors grown in culture possess membrane receptors that bind and internalize acid isoferritin. These receptors are regulated by the iron status of the cell, implying that ferritin iron uptake may represent a normal physiologic pathway. The present studies describe the fate of internalized ferritin, the mechanisms involved in the release of its iron, and the recognition of th...

متن کامل

PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP...

متن کامل

Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution.

To test the hypothesis that variations in H- and L-subunit composition in the ferritin shell affect intracellular iron metabolism, we established stable transfectants of mouse erythroleukemia cells overexpressing the H-ferritin subunit. Analyses were performed on individual clones of transfected cells induced to differentiate with hexamethylenbisacetamide (HMBA). The results showed that there w...

متن کامل

Ferritin uptake by human erythroid precursors is a regulated iron uptake pathway.

Iron delivery to mammalian cells is traditionally ascribed to diferric transferrin (Tf). We recently reported that human erythroid precursor cells possess specific membranes receptors that bind and internalize acid isoferritin. Here we show that ferritin uptake by these cells is highly regulated and that the internalized ferritin-iron is used for home synthesis and thus, this process could cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 90 2  شماره 

صفحات  -

تاریخ انتشار 1997